首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   3篇
林业   1篇
农学   2篇
基础科学   1篇
  44篇
综合类   8篇
农作物   13篇
水产渔业   4篇
畜牧兽医   11篇
园艺   2篇
植物保护   3篇
  2023年   2篇
  2022年   1篇
  2021年   4篇
  2020年   3篇
  2019年   2篇
  2018年   8篇
  2017年   5篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   10篇
  2012年   2篇
  2011年   2篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   3篇
  2005年   1篇
  2004年   5篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1979年   1篇
  1901年   1篇
排序方式: 共有89条查询结果,搜索用时 171 毫秒
61.
Different concentrations, viz. 5, 10 and 25 ppm of aldicarb, carbofuran, phorate fensulfothion and fenamiphos were observed for their pesticidal effects on chickpea plant in terms of various plant growth parameters such as plant length as well as weight, pod numbers, root-nodulations and chlorophyl content. Significant improvement in plant growth was noted in lower concentrations such as 5 and 10 ppm of different pesticides but 5 ppm concentration proved highly effective and non-phytotoxic. The phytotoxic effect was noted in those plants treated with 25 ppm concentration of all the pesticides. Carbofuran was found to be most effective for improvement of over all plant growth and fensulfothion the least.  相似文献   
62.
Abstract

Continuous cropping obstacle is prevalent for protected cultivated cucumber in China. Intercropping garlic may effectively relieve this obstacle due to its allelopathic and antimicrobial effects. A two-growing season investigation was carried out during autumn 2009 to spring 2010 in plastic tunnel to determine the effects of intercropped garlic and green garlic on the overall growth of cucumber and soil biological properties. Results showed that green garlic exhibited the inhibitory effect on the growth of cucumber in spring cultivation 2010. Garlic–cucumber intercropping system increased yield of cucumber differently depending on garlic cultivars, with only cv. G005 showing significant increase (13.4%). Intercropping systems were evaluated as a greater net benefit system as compared to monoculture cultivation. Populations of soil bacteria and actinomyces were stimulated, while fungi were inhibited under intercropping system. Activities of soil invertase, urease, and alkaline phosphatase were encouraged under intercropping system in spring cultivation 2010 compared with monoculture. The promotion effect of intercropped garlic on urease and alkaline phosphatase maintained till garlic harvest. These results suggest that intercropping system can improve soil biology environment and alleviate continuous cropping obstacle of cucumber at different levels.  相似文献   
63.
Osmotic and specific ion effects are the most frequently mentioned mechanisms by which saline substance reduces plant growth. However, the relative importance of osmotic and specific ion effect on plant growth seems to vary depending on the salt tolerance of the plant under study. Tall wheatgrass (TW), perennial ryegrass (PR), African millet (AM) and Rhodesgrass (Rh) were grown in nutrient solution with sodium chloride (NaCl), sodium sulfate (Na2SO4), potassium chloride (KCl), and potassium sulfate (K2SO4) salinity up to electrical conductivity (EC) 27 dS m?1. Growth of all plant species decreased significantly at high level (EC 27 dS m?1) of NaCl and Na2SO4 salts. However, the growth of none of the plant species was affected significantly by KCl and K2SO4 at any level. Even leaf and shoot fresh weights were enhanced by K2SO4 in all plant species, except AM. Chlorine (Cl) was taken up in similar quantities from KCl and NaCl solutions and the content of the respective cations was similar to each other. Further sensitivity to sulfate and chloride was equal when sodium concentrations in shoots were equal, regardless of the anion composition of the media. The sodium (Na) concentration of the leaves of the plant species increased with increased NaCl and Na2SO4 levels in the nutrient solutions. The leaf Na concentration of TW was lower than that of the other plant species. However, the root Na concentration of TW was higher than that of the other plant species. Increased NaCl and Na2SO4 concentrations had a marked effect on leaf water potential of all plant species, and the TW showed higher leaf water potential at all levels of salts. Tall wheatgrass adjusted osmotically by accumulating electrolytes from the nutrient solution and by accumulation of glycinebetaine. Sodium was generally found more injurious than Chloride in all the four forage species. Salt tolerance could be ascribed as greater exclusion of Na ion.  相似文献   
64.
65.
In the conservation agricultural systems practised in Australia, cultivation is not commonly utilised for the purpose of weed control. However, occasional use of tillage (strategic tillage) is implemented every few years for soil amelioration, to address constraints such as acidity, water repellence or soil compaction. Depending on the tillage method, the soil amelioration process buries or disturbs the topsoil. The act of amelioration also changes the soil physical and chemical properties and affects crop growth. While these strategic tillage practices are not usually applied for weed control, they are likely to have an impact on weed seedbank burial, which will in turn affect seed dormancy and seedbank depletion. Strategic tillage impacts on seed burial and soil characteristics will also affect weed emergence, plant survival, competitive ability of weeds against the crop and efficiency of soil applied pre-emergent herbicides. If growers understand the impacts of soil amelioration on weed demography, they can more effectively plan management strategies to apply following the strategic tillage practice. Weed seed burial resulting from a full soil inversion is understood, but for many soil tillage implements, more data is needed on the extent of soil mixing, burial of topsoil and the weed seedbank, physical control of existing weeds and stimulation of emergence following the tillage event. Within the agronomic system, there is no research on optimal timing for a tillage event within the year. There are multiple studies to indicate that strategic tillage can reduce weed density, but in most studies, the weed density increases in subsequent years. This indicates that more research is required on the interaction of amelioration and weed ecology, and optimal weed management strategies following a strategic tillage event to maintain weeds at low densities. However, this review also highlights that, where the impacts of soil amelioration are understood, existing data on weed ecology can be applied to potentially determine impacts of amelioration on weed growth.  相似文献   
66.
Soil salinity presents a serious threat to crop production. The relatively poor tolerance to this stress agent exhibited by conventional crops incentivizes the search for alternative producers of food and forage in salinity-affected environments. Halophytes belonging to the genus Salicornia L. have been suggested as being able to provide both forage and edible seed oil. Here, a set of 14 Salicornia europaea L. accessions was investigated for their ability to produce seed oil and forage in response to a range of salt concentrations (100, 300 and 600 mM NaCl) in the water used for irrigation. Seed of the accessions was collected from diverse sites close to saline rivers and the sea in Iran. Salinity was shown to have a major effect on biomass yield, and on seed oil yield and composition. The ratio of unsaturated to saturated fatty acids in the seed oil was remarkably high. Forage yield was highest when irrigated with 300 mM NaCl for most of the accessions, while a level of 600 mM NaCl suited the production of seed oil.  相似文献   
67.
In order to study the effects of different levels of salt stress and nitrogen(N) on physiological mechanisms,carbon isotope discrimination(△~(13)C),and yield of two wheat cultivars(cv.),a two-year field experiment was carried out during 2013-2015.The treatments included three levels of salt stress(1.3,5.2,and 10.5 dS m~(-1)),three levels of N(50,100,and 150 kg N ha~(-1)),and two wheat cultivars,Bam and Toos.Under salt stress,N application(100 and 150 kg N ha~(-1)) produced a significant effect on both cultivars with respect to physiological traits,i.e.,net photosynthetic rate(P_n),stomatal conductance(g_s),chlorophyll index(Cl),Na~+/K~+ratio as well as the grain yield(GY).The salt-tolerant and-sensitive cultivars exhibited the maximum values of physio-biochemical and yield attributes at 100 and 150 kg N ha~(-1),respectively.The results of △~(13)C showed a significant difference(P0.001) between wheat cultivars under the control and salt stress.According to our result,salt-tolerant cultivar Bam seems to be more efficient in terms of higher GY,P_n,g_s,Cl,and lower Na~+/K~+ratio as well as higher △~(13)C as compared with salt-sensitive cultivar Toos,under salt stress.Therefore,a significant positive correlation that observed between △~(13)C and GY,indicated that △~(13)C may be an effective index for indirect selection of yield potential in wheat under irrigation regimes with saline water.  相似文献   
68.
The effects of different estrus synchronization techniques on follicular development and estrus response were studied in 81 nulliparous Boer does. The does were divided into nine groups. Eight of the nine groups were synchronized with prostaglandin F2-alpha (PGF(2α)) or flugestone acetate (FGA) or their combinations, and the ninth group was a control group. In addition to the above combinations, four of the eight synchronized groups were given 5?mg follicle-stimulating hormone (FSH) and the remaining four groups were administered 300?IU equine chorionic gonadotrophin (eCG). Posttreatment follicular development was monitored until ovulation occurred using a real-time B-mode ultrasound scanner (Aloka, 500 SSD, Japan), with a 7.5-MHz transrectal linear probe. All the does from the synchronized groups that were given eCG exhibited oestrus while only 88.9% of the does synchronized with FSH showed estrus. The estrus response was observed to be the least among the does synchronized with PGF(2α) + FSH (33.3%) combination followed closely by the FGA + FSH (42.9%) combinations. It was observed that the combinations of FGA + PGF(2α) + FSH resulted in increased percentage of estrus response, duration of estrus, and ovulation. The number of follicles was higher (P?相似文献   
69.
Through the adoptive transfer of lymphocytes after host immunodepletion, it is possible to mediate objective cancer regression in human patients with metastatic melanoma. However, the generation of tumor-specific T cells in this mode of immunotherapy is often limiting. Here we report the ability to specifically confer tumor recognition by autologous lymphocytes from peripheral blood by using a retrovirus that encodes a T cell receptor. Adoptive transfer of these transduced cells in 15 patients resulted in durable engraftment at levels exceeding 10% of peripheral blood lymphocytes for at least 2 months after the infusion. We observed high sustained levels of circulating, engineered cells at 1 year after infusion in two patients who both demonstrated objective regression of metastatic melanoma lesions. This study suggests the therapeutic potential of genetically engineered cells for the biologic therapy of cancer.  相似文献   
70.
Lignin, nature’s abundant polymer with a remarkably high carbon content, is an ideal bio-renewable precursor for carbon fiber production. However, the poor mechanical property of lignin-derived fibers has hindered their industrial application as carbon fiber precursor. In this work, process engineering through the application of computational modeling was performed to optimize wet-spinning conditions for the production of lignin precursor fibers with enhanced mechanical properties. Continuous lignin-derived precursor fibers with the maximum possible lignin content were successfully produced in a blend with polyacrylonitrile, as a wet-spinning process facilitator. Response surface methodology was employed to systematically investigate the simultaneous influence of material and process variables on mechanical properties of the precursor fibers. This allowed generating a mathematical model that best predicted the tensile strength of the precursor fibers as a function of the processing variables. The optimal wet-spinning conditions were obtained by maximizing the tensile strength within the domain of the developed mathematical model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号